

Universidade Federal do Paraná Setor de Tecnologia

Departamento de Engenharia Elétrica

Disciplina: TE321 – Laboratório de Circuitos Elétricos II Professor: Clodomiro Unsihuay-Vila

Experimento 04 - Circuito RLC Série

Objetivo do Experimento

Analisar o comportamento de circuitos de característica mista indutiva e capacitiva em regime permanente CA.

Material Necessário – disponível no laboratório

1 osciloscópio

1 gerador de funções

Material Necessário – responsabilidade do grupo

1 protoboard

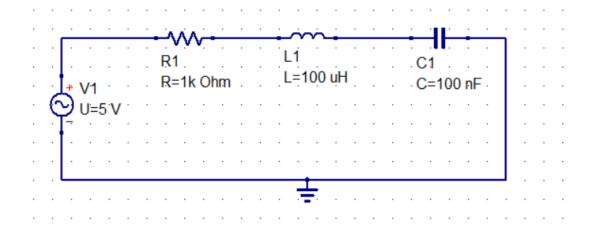
1 cabo de gerador de funções

2 cabos de osciloscópio

Indutores: 1 μH e 100 μH

Capacitores: 1 nF e 100 nF

Resistores: $1 \text{ k}\Omega$, $10 \text{ k}\Omega$ e $100 \text{ k}\Omega$


1 multímetro digital com função AC

Cabos jumper

Procedimento

a- Circuito RLC série

O circuito a ser analisado é o da figura abaixo:

- 1- Para as frequências de 1 kHz e 1 MHz, calcule a tensão eficaz esperada sobre cada elemento do circuito. Qual dos elementos apresenta a maior impedância para estas duas frequências? (Obs: considere a tensão de 5 V como tensão pico a pico).
- 2- Realize a medição com o osciloscópio das tensões pico a pico sobre cada elemento para as duas frequências. Calcule o valor eficaz a partir dos valores obtidos.
- 3- Para f = 50 kHz, utilize o modo XY para visualizar a relação entre a tensão de entrada e a tensão do indutor em relação à referência. Repita para f = 1 MHz. Qual a diferença observada?
- 4- Medir a defasagem angular entre a tensão de entrada e a tensão no conjunto LC (indutor + capacitor em série) para as duas frequências dos passos 1 e 2 (usar medição de fase no osciloscópio).
- 5- Calcule a frequência de ressonância deste circuito. Encontre este valor graficamente na prática, medindo a tensão VIc sobre o conjunto indutor-capacitor, iniciando na frequência de 1 kHz e aumentando até que esta tensão seja nula.
- 6- Alterar o indutor para 1 μH e refazer o passo 5.

No relatório, incluir:

Passos 1 e 2:

Valores de tensão esperados e práticos, conforme tabelas:

R1 = 1 kΩ, L1 = 100μH, C1 = 100 nF e f = 1 kHz					
Elemento	Impedância	Tensão	Eficaz	Tensão Eficaz Real	Diferença
	(módulo +	Esperada	(módulo	(módulo + fase)	fasorial
	fase)	+ fase)			
Resistor					
Indutor					
Capacitor					

R1 = 1 kΩ, L1 = 100μH, C1 = 100 nF e f = 1 MHz					
Elemento	Impedância	Tensão	Eficaz	Tensão Eficaz Real	Diferença
	(módulo +	Esperada	(módulo	(módulo + fase)	fasorial
	fase)	+ fase)			
Resistor					
Indutor					
Capacitor					

Passo 3:

Imagens e comentário sobre as imagens no modo XY.

Passo 4: Defasagem temporal medida e defasagem angular calculada, conforme tabelas:

Caso	Defasagem angular (º)
f = 1 kHz	
f = 1 MHz	

Passos 5:

Frequências de ressonância e tensões esperadas e medidas sobre o resistor na frequência de ressonância, conforme tabelas:

Caso	Freq. Ressonância Teórica (Hz)	VIc eficaz esperada(V)	Freq. Ressonância Prática (Hz)	VIc eficaz medida(V)
L1 = 100µH e C1 = 100 nF				

Passo 6: idem passo 5, para a nova frequência de ressonância.

Caso	Freq. Ressonância	Vlc eficaz	Freq.	Vlc eficaz
	Teórica (Hz)	esperada(V)	Ressonância	medida(V)
			Prática (Hz)	
$L1 = 1\mu H e$				
C1 = 100 nF				