DATA USED IN PAPER: DAY-AHEAD OPTIMAL OPERATION PLANNING OF WIND AND HYDROTHERMAL GENERATION WITH OPTIMAL SPINNING RESERVE ALLOCATION

For the hydroelectric system, were used parameters shown in Tables 1-5.

$a_0(x10^3)$	$a_1(x10^{-1})$	$a_2(x10^{-5})$	$a_3(x10^{-9})$	$a_4(x10^{-13})$
[m]	[m/hm ³]	[m/hm ⁶]	[m/hm ⁹]	[m/hm ¹²]
0,4477	0,1823	-0,2871	0,3003	-0,1273

TABLE 1 – COEFFICIENTS OF THE POLYNOMIAL QUOTA AMOUNT.

 $TABLE\ 2-COEFFICIENTS\ OF\ THE\ POLYNOMIAL\ QUOTA\ DOWNSTREAM.$

$b_0(x10^3)$	$b_1(x10^{-4})$	$b_2(x10^{-7})$	<i>b</i> ₃ (x10 ⁻¹²)	$b_4(x10^{-18})$
[m]	[s/m ²]	[s ² /m ⁵]	$[s^{2}/m^{8}]$	$[s^{4}/m^{11}]$
0,3944	21,110	-0,7923	2,3516	-27,1386

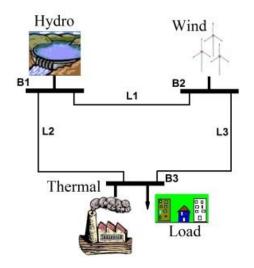


Fig.1: Hydrothermal-Wind System (3 Buses).

TABLE 3 – YIELD COEFFICIENTS OF THE HYDROPOWER AND THE COEFFICIENT OF HYDRAULIC LOSSES.

$\rho_0(x10^{-1})$	$\rho_{I}(x10^{-3})$	ρ_2 (x10 ⁻³)	ρ_3 (x10 ⁻⁶)	ρ_4 (x10 ⁻⁶)	ρ_5 (x10 ⁻⁵)	$k(x10^{-6})$
	[s/m ³]	[m ⁻¹]	[s/m ⁴]	$[s^2/m^6]$	[m ⁻²]	$[s^{2}/m^{5}]$
3,9235	2,9719	1,9804	4,0996	-5,7325	-1,3964	10,776

TABLE 4 – LIMITS VOLUMES AND FLOWS OF RESERVOIRS.

Minimum Volume	Maximum Volume	Maximum Swallowing	Maximum Spillage	
[hm ³]	[hm ³]	[m ³ /s]	[m ³ /s]	
2662	6775	1576	3152	

TABLE 5 – CHARACTERISTICS OF THE GENERATING UNITS.

Number of Units	Operative Zones [MW]	Maximum Swallowing [m ³ /s]	Nominal Decline (m)
4	[210-355]	394	102

The inflow will considered 902 [m³/s] and the initial volume will 5.718,5 [hm³]. In this paper is used the coefficients of future costs and adapted so that the hydroelectric do not waste water and hydropower problem converge showed in Table 6.

TABLE 6 – VALUES OF THE COEFFICIENTS OF COST FUNCTIONS $\pi^{(P)}$ [\$/hm³] E *Ctotal(p)* [\$].

π^{l}	π^2	π^3	π^4	π^5
2053,351	2311,881	41,037	407,217	274,554
C_{total}^{I}	C_{total}^2	C_{total}^{3}	C_{total}^4	C_{total}^{5}
2,9014 E+5	7,9698E+4	1,2972E+5	7,1092E+5	5,1569E+5

ct ₁	ct ₂	Pt _{min}	Pt _{max}	Δp	t ^{down}	t ^{up}	t ^{online}	
[\$/MW]	[\$/MW ²]	[MW]	[MW]	[MW/h]	[h]	[h]	[h]	start-up cost [\$]
40	0,005	0	300	100	4	2	4	150

TABLE 7 – PARAMETERS OF THERMAL UNIT

Figure 2 show daily typical curve of wind power generation. The maximum wind power capacity is 150 MW, however, in this paper the wind power forecasted capacity varies along the 24-hour of day thus the spinning reserve requirements varies in each hour.

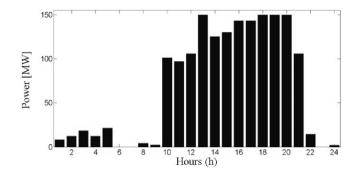


Fig. 1: Daily Typical Curve of Wind Power Generation.

Figure 3 shows the hourly distribution of day demand considered in this paper.

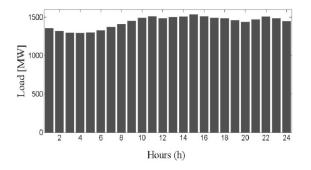


Fig. 2: Daily Typical Curve of the Energy Demand in the Summer Period.